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Abstract-This paper first analyses the case of flow through a tube, or over a wire, with a heat-transfer 
coefficient showing a linear dependence on wall temperature, and concludes that axial conduction in 
the tube wall can combine with the heat-transfer coefficient variation to produce non-uniform steady-state 
axial temperature distributions. The results of numerical solutions for a more realistic heat-transfer 
coefficient variation with wall temperature are then presented. The experimental evidence of instability 
of this type is assessed, the evidence being drawn from supercritical pressure forced and mixed convection 

experiments. 

NOMENCLATURE 

slope of heat-transfer coefficient decrease; 

current; 
dimensionless parameter, 

bulk fluid temperature; 
gas side bulk fluid temperature; 

pseudo-critical temperature: 
surface temperature; 
dimensionless axial coordinate; 
dimensionless axial coordinate; 
dimensionless temperature; 

Zl, z2, roots of equation (11); 

b, tube wall thickness; 

h, axial step in finite difference calculations; 

k, thermal conductivity; 

4, heat flux; 

403 heat flux when T, = To; 

I, wire radius; 

ri, tube inner radius; 

r0, tube outer radius; 

r, tube mean radius; 

4 time; 

X, axial coordinate. 

Greek symbols 

heat-transfer coefficient; 
gas side heat-transfer coefficient; 
heat-transfer coefficient when T, = To ; 

temperature coefficient of resistance; 
temperature difference (Tw - To); , 

maximum possible temperature difference 
with gas heating; 
thermal diffusivity; 
electrical resistivity; 
electrical resistivity at temperature To; 

dimensionless temperature; 
dimensionless time. 

1. INTRODUCTION 

THERE are a number of problems in which the con- 
vective heat-transfer coefficient from a surface depends 
upon surface temperature, natural convection being an 
obvious example. Whereas the heat-transfer coefficient 

increases with increase in surface temperature in 
natural convection there are some variable property 

convection flows in which it decreases, for example, 
heat transfer by forced or mixed convection to super- 

critical pressure fluids. In these circumstances a surface 
supplied with heat at a constant rate may be thermally 
unstable, a slight increase in temperature causing a 
decrease in convective heat removal and further in- 

crease in temperature. This mechanism has been recog- 

nised by Stephan [1] and by Kovalev [2], both of 
whom deduced criteria for avoiding instability. Their 
concern was the transition and film boiling regimes 
of pool boiling, in which convective heat removal 
decreases with increasing temperature difference 
between surface and fluid and which is thus prone to 

instability. Their criteria were based upon spacially- 
independent considerations however. This paper in- 
cludes the influence of axial conduction along the sur- 

face and shows that the instability can lead to stable 
non-uniform surface temperature distributions. The 
analysis is applicable to a wire electrically heated by 

the passage of current and cooled by a crossflow such 
that the heat transfer coefficient decreases with in- 
creasing temperature. This would arise for example in 

the crossflow of supercritical pressure fluid whose bulk 
temperature lay below the pseudo-critical temperature 
Tw, but with the wire temperature above Tw. The 
analysis is also applied to flow through a tube heated 
by the passage of current through the tube wall and 
cooled by convection on the inside, with the same 
dependence of heat-transfer coefficient on temperature. 
The case examined first is for linear dependence of 
heat-transfer coefficient on temperature. Wall tem- 
perature distributions for more realistic heat-transfer 
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coefficient dependence are then presented and the 
experimental evidence of such distributions is dis- 
cussed. 

2. LINEAR DECREASE OF HEAT-TRANSFER COEFFICIENT 

WITH INCREASING SURFACE TEMPERATURE 

Dealing first with the wire, an energy balance gives 

1 aT, (“T,,, 12p 2ctAT 

K ar =sx2 +k(r~~)~ 
-__ 

rk 
(1) 

Neglecting the variation of bulk temperature with x 
and t allows the dependent variable to be changed 
to AT. This is exact for two phase equilibrium flows 
in which TO is the saturation temperature. It is a good 
approximation for supercritical pressure fluids in the 
region of To = Tpe. Introducing dimensionless variables 

rk = t/(i’/lc), XT = x/I. and 0 as before gives the 
equivalent of equation (3) 

Radial temperature variations have been negiected and 

the current is assumed constant. In the absence of axial 
conduction the heat generated with the wire at tem- 
perature To would produce a heat flux. 

12p0r 

q” = 2(nr2)’ 

Changing the dependent variable to AT, since To is 

constant, 

1 dAT d2AT 

K i;t 
-p+qo[$)(;j-@AT. (2) 

Introducing dimensionless variables r’ = l/(r’/K), 
X = x/r and 0 = AT/(qo/ao) where a0 is the heat- 
transfer coefficient when AT is zero, equation (2) can 
be re-written 

We can now introduce resistivity and heat-transfer 
coefficient variations 

and 
P = POU +BAT) 
c( = cco(l -BAT) 

(4) 

to give 

With further substitutions, 

and (6) 

we get a single parameter equation, 

where 

az a2z -=-_ 
1% dY2 

z+s~z2+ 1 (7) 

The same approach may be adopted for the analysis of 
the tube. Assuming the tube wall to be thin so far as 
radial temperature variations are concerned, and to be 
insulated on its outer surface, the energy balance is: 

1 ST, (7’T, 12p 

K at ax2+ 
-------a(T,-To) 
(2m%)‘k 

(8) 

Only the dimensionless parameter incorporating 

thermal conductivity differs between equations (3) and 
(9) the difference arising from geometry, and sub- 
stitutions from equation (4) lead to an equation 
identical to equation (7). The thermal conduction 

parameter changes the form of Y and 7 which become 

The suffix T referring to the tube will be omitted from 
now on, since the solutions of equation (7) will be 
presented in dimensionless variables. 

(a) Steady state solutions 

In the steady state, equation (1) becomes 

(10) 

from which it is clear that axial conduction makes up 
the difference between heat generated and heat re- 

moved. This difference is shown by Fig. l(a) in which 
convective heat removal for some arbitrary value of B 
is plotted against AT. Heat generated is also shown 
(full lines, the curves shown dotted will be discussed 
later). At two values of AT a balance occurs. In terms 
of dimensionless temperature the two values of AT 

represent the roots of the equation [from equation (7)]. 

SZ2-z+1 =o. (11) 

For 0 < S < 4 there are two real roots. That corre- 

sponding to AT, in Fig. I is a stable solution--an 
increase in AT away from this value improves con- 
vective heat removal and provides a restoring action. 
The root corresponding to AT2 in Fig. 1 is unstable. 
For S = 4 there is a single real root, the significance 
being apparent from Fig. l(b). S = 0 is the case of 
constant heat-transfer coefficient. The loci of the roots 
of equation (11) are plotted in Fig. 2. Solutions of 
equation (7) in its steady state form have been carried 
out for the case of a semi-infinite wire or tube, 
specifying Z and (aZ/i? Y) (temperature level and tem- 
perature gradient) at the finite end. The variations of Z 
with Y are shown in Fig. 3, and it can be seen that 
with an adiabatic end at a prescribed temperature 
level lying within the envelope of Fig. 2, spatial vari- 
ations of temperature occur. In terms of Fig. 1 these 
represent oscillations of temperature about AT2; the 
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2 

Fro. 1. Heat generation and convective 
removal vs real and dimensionless tem- 

perature differences. 

amplitude of a typical oscillation is shown in Fig. 2. 
Initial prescribed temperatures lying outside the en- 
velope produce variations of 2 with no limit and 
indicate that no steady state is possible under these 
circumstances. Varying the initial slope does influence 

the solutions and very high initial slopes can produce 
unrealistic values of 2, indicating no steady state, even 
for initial values of Z within the envelope of Fig. 2. 

I 1 

0.05 0.10 cl 15 0.20 0.25 

S 
FIG. 2. Loci of roots of equation (11) 

A variety of solutions is shown in Fig. 3 for S = 0.15. 
In terms of actual distance X, the wavelength of the 
temperature variation is governed by the group (2wJk) 

for the wire and (010 ri i;lbk) for the tube. These represent 
the ratio of thermal resistances of convection and of 
axial conduction. Thus the temperature distributions 
“necessary” to make up the balance between heat 
supply and removal depend upon the geometry and 
material of the tube or wire. 

Although the temperature variation of resistivity has 
been taken as linear in the analysis, some metals, e.g. 
iron, have a quadratic variation. Fig. l(b) shows that 
in this case even for constant heat-transfer coefficient, 
two intersections are possible and stable non-uniform 
temperature distributions could in principle occur. 

(b) Transient sotutions 

The final steady state solutions discussed above may 
not occur in general, and solutions of the transient 
equations have been carried out for a finite length of 

FIG. 3. Steady state dimensionless temperature distributions for 
S = 0.15 and various boundary conditions. 
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the tube considered to be made up of typically 80 
elements each of length h (h = rJ2 was used). The set 
of finite difference equations 

(Zi+l+Zi-I-2Zi) 
h2 

-Zi+SZ~+l=~ (12) 

were solved using the Runge-Kutta method. The form 
of the Z solution depends upon how much of the 

envelope of Fig. 2 is spanned by the initial temperature 
distribution. Figure 4(a) shows the solutions for a 
linear temperature distribution at time z = 0 with the 

ends held isothermal, one end lying within the envelope 
and the other outside at a higher Z. With the entire 
distribution lying within the envelope, or with one end 

0 40h 8Oh 
Axial location 

convection to supercritical pressure fluids in the 
absence of buoyancy effects when bulk temperature 
lies below TPc and wall temperature lies above TP. The 

actual values used here correspond to the experiments 
of Harrison [6] who measured wall temperature dis- 
tributions for supercritical pressure water at 245 bars 
flowing under forced convection through small bore 

stainless steel tubes. There is disagreement between the 
values of c( predicted by the correlations for super- 

critical pressure fluids [9], although all show the same 
trend, hence the choice of this particular data. There 
are now, in Fig. 5, three intersections of the heat 

generation and removal curves, the centre one being 
unstable. Oscillations of temperature about AT2 can 

, , , 
0 40h 80h 

Axial location 

FIG. 4. Transient dimensionless temperature distributions for different 
initial conditions. 

below, Fig. 4(b), the stable solution Z = Z1 occurs over 
a long length of the tube. Figure 4(a) does not reach 

a steady state because of the linear c( variation, which 
gives negative heat-transfer coefficients at high AT 
values. 

3. SOLUTIONS FOR MORE REALISTIC 
HEAT-TRANSFER COEFFICIENTS 

A change in the character of Fig. 1 occurs for heat- 
transfer coefficients which decrease with increasing AT 
but reach a minimum positive value, Fig. 5. The c( 
distribution is shown inset and is typical of pure forced 

AT, ‘C 

100 2w 3w 

AT, ‘C 

FIG. 5. Heat-transfer coefficient and convective heat re- 
moval vs temperature difference for typical supercritical 

pressure forced convection experiments. 

occur but lie within limiting values corresponding to 
AT, and ATs. 

(a) Steady state solutions 
Figure 6 shows solutions of equation (8) in steady 

state form, using the data of Fig. 5. The end condition 
for the semi-infinite tube or wire is adiabatic at various 

temperature levels. Constant heat supply rate has been 
assumed for simplicity, b = 0. Figure 5 shows that 

oscillations may take place for heat fluxes of about 
0.87 < q. < 1.35 MW/m2. Initial temperature levels 
between ATi and AT, produce oscillations rising to a 
maximum between AT2 and AT3, whilst initial tem- 
perature levels between AT2 and AT, show a decrease 
in temperature. Too low an initial value of AT, e.g. 
lOO”C, causes unrealistic temperatures above AT3 to be 
reached, indicating no permissible steady state solu- 
tion. Initial values very close to AT3 produce a very 
flat topped variation. 

(b) Transient solutions 

Transient solutions of equation (8) have been ob- 
tained exactly as in Section 2(b), with the heat transfer 
data of Figs. 5 and 6. A sample of results is shown 
in Fig. 7, which represents the temperature distributions 
along a section of tube with isothermal ends held at 
AT = 200°C. The three solutions are for various initial 
temperature levels, the distribution being uniform in 
each case. If the initial distribution is close enough to 

the stable value AT, or AT3, the final distribution is 
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b = 1.625mm 
k =0.021 kW/mK 
K =6.0 x 10-4m2/s 
p =62.5(1+6.7x10- 
I =535A 

($q;o 

-AT, 1 
IO 20 30 40 50 60 70 

Axial location, mm 
FIG. 6. Steady state wall temperature distributions for the data of 
Fig. 5 with a particular small bore tube and various initial temperature 

0 15 30 45 60 

Axial location, mm 

FIG. 7. Wall temperature distributions after 
time t = 10s for a tube with isothermal ends 

and various uniform initial levels of AT. 

simple. A more complicated distribution with oscil- 

lations about AT2 is shown. Changes in the distribu- 
tions after time t = 10 s were negligible. 

4. EXPERIMENTAL EVIDENCE 

The evidence is all from supercritical pressure heat- 
transfer experiments, which are perhaps unique in the 

variety of well defined irregularities of wall temperature 
distribution which have been measured. The heat- 
transfer coefficient is known to vary with mass flow 
rate, pressure, and wall and bulk temperatures in forced 
convection flows under these conditions, and although 
the variation of bulk temperature along a tube is 
frequently small when near T,,, it is probable that the 
heat removal curve such as Fig. 5 would vary with 
axial location. This would distort the temperature 

distributions from the idealised ones calculated above. 
As a result of such considerations the experimental 

evidence is not as clear as one would prefer. There 

are three types of irregularity of wall temperature 
distribution which form the main evidence. 

(a) Buoyancy peaks 
Sharp peaks in wall temperature have been observed 

in forced flows in tubes with the flow vertically up- 
wards; under identical conditions with the flow verti- 
cally downwards they do not occur. Hall and Jackson 
[3] formulated amodel to explain the effect based upon 

the idea that buoyancy forces acting upwards with the 
forced flow reduced the level of shear stress and hence 
the turbulence production rate. When this occurred 
near the wall in the region of maximum turbulence 
production the heat-transfer coefficient was reduce<l. 
The buoyancy forces are wall temperature dependent 

and in terms of the present model they present 2 
mechanism by which heat-transfer coefficient may 
decrease with increasing wall temperature. In several 

experiments (e.g. Jackson and Evans-Lutterodt [4] 
double peaks have been observed, Fig. 8. These peaks 
are quite narrow in axial extent. In terms of the present 
model the sharpness and wavelength is interpreted as 
being due to the thermal instability and the conductive 
properties of the tube, rather than to a reduction and 
subsequent recovery of turbulence production. Thus 
multiple peaks will occur if the axial extent of the flow 
having a convective heat removal curve as in Fig. 5 

is long compared with the corresponding temperature 
wavelength. The experimental evidence of Hall and 
Jackson [3] shows some evidence of reductions in wall 
temperature immediately upstream of a peak, similar 
to Fig. 7. 

(b) Localised reductions in wall temperature 
Figure 9 shows some data of Domin [5] which 

appear to correspond in type to those of Fig. 6 with 
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Tube bore = 19.0 mm 

Lrn per a+ure T, ~ 

T 
PC Bulk temperature To 

0 20 40 60 80 100 120 

Distance from start of heating, tube diams 

FIG. 8. Data of [4], for mixed convection to supercritical pressure 
CO1 at 74.5 bar. 

initial temperatures close to A&. The wall temperatures 

upstream of the reduction are much higher than TW 

(T,, = 386°C under these conditions) so that the level 
of heat-transfer coefficient would be relatively low and 
the AT values high in terms of Fig. 5. 

600 
Tube bore = 4.0mm 

244 bor 
_--- 

: 
< temparoture T, 

” 
300’ 1 j j a ( c a 

02 04 06 0.8 IO 12 

Distance from entry, m 

FIG. 9. Data of [5] for forced convection to supercritical 
pressure water. 

(c) Multiple peaks in buogancy~eejows 

Figure 10 shows the data of Harrison [6]. The peaks 
built up slowly from the downstream end of the tube 

towards the location at which T, = Tpcr which remained 
steady throughout. It is for T, > TPC that LX begins to 

deteriorate with increasing T,. Harrison’s experiments 
were carried out with the test section horizontal so 
the deterioration in x is due to property variations 
and not buoyancy effects. The assumption of TO = 
constant is relatively good in these experiments and 
the heat removal curve of Fig. 5 is less likely to change 
radically with X. In upwards buoyancy influenced flows 
the natural convection improves the heat-transfer coef- 
ficient after only a relatively short axial extent, which 
may account for no more than two peaks occurring 
in these cases. Although the temperature distributions 

Tlme(min) 

00 
A 30 

600 - v 40 
0 55 
“70 

0 30 tie 

Distance from start of heating, m 

FIG. 10. Transient wall temperature measurements from [6] 
for forced convection to supercritical pressure water in a 

3.1 mm bore tube. 

of Fig. 10 compare with the semi-infinite steady-state 
tube distributions of Figs. 3 and 6, it is not clear why 
growth took place from the downstream end of the 
tube. Ormatsky, Glushenko, Siomin and Kalatcher [7] 
have reported similar multi-peaked distributions in 

experiments of supercritical pressure water flowing 
through bundles of heated rods. 

5. DISCUSSION 

The experimental data selected as evidence of the 
proposed mechanism represents the extremes of wall 
temperature variation. Indeed, it is only the extreme 
nature of these sets of results which allows the 
mechanism to be identified; with less significant wall 
temperature variations the a distribution and its axial 
variation are not known precisely enough in super- 
critical pressure flows to allow a high degree of agree- 
ment between prediction and experiment to be ob- 
tained. In terms of Fig. 5 severe wall temperature 
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variations are caused by a large difference between 

AT, and ATJ. Heat-transfer coefficients less sensitive to 

wall temperature would cause the maximum and 

minimum in clAT to be more nearly equal, resulting 
in smaller wall temperature variations. 
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The literature on supercritical pressure fluids con- 
tains many correlations (see for example the review 
by Hall, Jackson and Watson [9]) which should, but 
do not, agree with one another. Part of the difficulty 3, 
in obtaining agreement between data produced by 
different workers under apparently similar conditions 
may be due to neglect of the effects considered here. 
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6. CONCLUSIONS 5. 

(a) For a semi-infinite tube or wire heated electrically 

and cooled by convection such that the heat-transfer 6, 

coefficient decreases with increase in temperature it has 

been shown that non-uniform steady-state axial tem- 

perature distributions can occur. 7. 

(b) Transient numerical calculations for tubes of 
finite length have shown that similar non-uniform tem- 
perature distributions may occur, depending upon the 

initial conditions. 8. 

(c) The evidence of this type of phenomenon having 
occurred in supercritical pressure flows has been 9, 

examined. Three different types of measured wall 
temperature distribution with extreme variations corre- 
spond in shape to those calculated. 

INFLUENCE DE LA CONDUCTION LONGITUDINALE EN PAR01 
SUR LA CONVECTION A PROPRIETES VARIABLES, AVEC REFERENCE 

PARTICULIERE AUX FLUIDES A PRESSION SUPERCRITIQUE 

Rbsumi-L’article analyse tout d’abord le cas d’un &coulement dans un tube ou autour d’un fil, avec un 
coefficient de convection d&pendant Iineairement de la tempkrature de la paroi et il con&t que la 
conduction longitudinale dans la paroi du tube se compose avec la variation du coefficient de convection 
pour produire une distribution longitudinale et permanente de tempkrature. On prCsente ensuite les 
rbultats numCriques pour une variation plus r&elle du coefficient de convection en fonction de la tem- 
pbrature parittale. On dkgage une instabilitk accessible expCrimentalement, surtout dans le cas de la 

convection forck ou mixte aux pressions supercritiques. 

DER EINFLUSS DER AXIALEN WANDWiiRMELEITUNG BE1 STRC)MUNGEN 
MIT VERANDERLICHEN STOFFEIGENSCHAFTEN-UNTER BESONDERER 
BERUCKSICHTIGUNG VON FLUIDEN BEI OBERKRITISCHEN DRUCKEN 

Zusammenfassung-In dieser Arbeit wird zunlchst der Fall einer StrGmung durch ein Rohr bzw. iiber 
einen Draht untersucht, wobei der Wtirmeiibergangskoeffizient linear von der Wandtemperatur abhlngt; 
hieraus wird gefolgert, dal3 eine axiale WIrmeleitung in der Rohrwand zusammen mit der Variation des 
WIrmeiibergangskoeffizienten nichtgleichfiirmige, stationire, axiale Temperaturverteilungen hervorrufen 
kann. AnschlieDend werden numerisch ermittelte Ergebnisse fiir realistischere Veranderungen des 
Wgrmeiibergangskoeffizienten mit der Wandtemperatur vorgestellt. Unter Verwendung von Experimenten 
bei erzwungener und gemischter Konvektion bei iiberkritischen Driicken wird eine InstabilitZt dieser 

Art nachgewiesen. 

BJIMIIHLlE TEI-IJIOI-IPOBOAHOCr’M CTEHKW B OCEBOM HAI-IPABJIEHWki 
B CJIYYAE KO BEKqall C YYETOM I13MEHEHklR CBOfiCT 

KKMAKOCTE !Z I-IPH CBEPXKPMTH9ECKOM AABJIEHklIl 

AIIEOTIUIWI - PaCCMaTpHBaeTCK Te’IeHHe B Tpy6e IIJIH BAOnb IIpOBOJIO’IKH, KOI-na KO@&IIeHT 
Tennoo6lvreHa JIHIIeaHo ~~BWCIIT 01 TeMnepaTypbI c1eHKH. ,L(enaeTca BbIBOA 0 TOM, ‘IT0 TenrIO- 

IIpOBOAHOCTb CTeHKIi Tpy6bI B OCeBOM HaIIpaBJIeHHH COBMeCTHO C B3MeHeHHeM KO3l$@IIJIIeHTa 
Tennoo6bIeHa MOXeT BbI3BaTb IieOAIiOpOLIHbIe CTaIWIOIIapHbIe paCIIpeAf%IeHHR TehlIIepaTypbI BAOJIb 
0cH. ~~HBOLWTCX uIcneWHbIe pe3ynbTaTbI Ana cnygaa H3MeHemuI K03r)@mnIeHTa Tennoo6bfeIia B 
3aBIICHMOCTII 01 TeMITepaTypbI CTeIiKH. TaKoe PaCIIpeAeJIeHHe AJIX.CJIy’IaSI BbIHyXAeHHOft II CMeIIIaH- 

HOfi KOHBeKUAH II&XI CBejYXK~IITIIWCKOM AaBJIeHIiII nOATBep~aeTCSI 3KCllePHMeHTZlMH. 


